APLIKASI ARBUSCULAR MYCORRHIZAE DAN JENIS PUPUK BERBEDA PADA KONDISI CEKAMAN KEKERINGAN TERHADAP MORFOLOGI DAN EFISIENSI PENGGUNAAN AIR PADA RUMPUT PAKCHONG

Application of Arbuscular Mycorrhizae and Different Types of Fertilizer Under Drought Conditions on Morphology and Efficiency of Water Usage in Pakchong Grass

Wulan Susanti^{1*}, Liman Liman¹, Muhtarudin Muhtarudin¹, Erwanto Erwanto¹

¹Study Program of Animal Nutrition and Feed Technology, Departement of Animal Husbandry, Faculty of Agriculture, University of Lampung *E-mail: susantiwulan353@gmail.com

ABSTRACT

This research aims to determine the effect of different levels of mycorrhizal and fertilizer types under drought stress conditions and the interaction between the two on the morphology and water use efficiency of pakchong grass. This research was conducted in November 2022-January 2023, conducted in the Greenhouse of the Integrated Field Laboratory, Faculty of Agriculture, University of Lampung. This research used a completely randomized design (CRD) with a factorial pattern consisting of mycorrhizal factors and fertilizer factors. The mycorrhizal factor consisted of 4 treatment levels, namely M0 (without mycorrhiza), M1 (20 grams of mycorrhiza), M2 (40 grams of mycorrhizae), M3 (60 grams of mycorrhizae) and the fertilizer factor consisted of 3 treatment levels, namely P1 (goat fertilizer), P2 (NPK fertilizer), P3 (NPK fertilizer + goat fertilizer). The data obtained were analyzed using Analysis of Variance and continued with the BNt test (smallest significant difference). The results of the study showed that the application of mycorrhiza and the type of fertilizer had no significant effect (P>0.05) on the morphology of plant height, number of leaves, leaf-stem ratio, leaf surface area and water use efficiency of pakchong grass and there was no effect between the two treatments. The application of mycorrhiza and the type of fertilizer had a significant effect (P<0.05) on the root weight of Pakchong grass, but there was no interaction between the two treatments. The results of BNt (least significant difference) on the fresh weight of pakchong grass roots showed that the M0 mycorrhizal treatment was not significantly different from the M1 and M3 treatments, the M2 mycorrhizal treatment was not significantly different from the M1 and M3 treatments, and the M0 treatment was significantly different from the M2 treatment. The BNt test results on the fresh weight of pakehong grass roots in the fertilizer treatment showed that the P1 treatment was significantly different from the P2 and P3 treatments.

Keywords: fertilizer, morphology, mycorrhiza, pakchong grass, water use efficiency

ABSTRAK

Penelitian ini bertujuan untuk mengetahui pengaruh pemberian level mikoriza dan jenis pupuk yang berbeda pada kondisi cekaman kekeringan serta interaksi antara keduanya terhadap morfologi dan efisiensi penggunaan air rumput pakchong. Penelitian ini dilaksanakan pada November 2022-Januari 2023, dilakukan di Rumah kaca Laboratorium Lapang Terpadu, Fakultas Pertanian, Universitas Lampung. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) pola faktorial yang terdiri atas faktor mikoriza dan faktor pupuk. Faktor mikoriza terdiri dari 4 taraf perlakuan yaitu M0 (tanpa mikoriza), M1 (mikoriza 20 gram), M2 (mikoriza 40 gram), M3 (mikoriza 60 gram) dan faktor pupuk terdiri dari 3 taraf perlakuan yaitu P1 (pupuk kambing), P2 (pupuk NPK), P3 (pupuk NPK + pupuk kambing). Data yang diperoleh dianalisis menggunakan Sidik Ragam (Analysis of Variance) dan dilanjutkan dengan uji Beda Nyata Terkecil (BNT). Hasil penelitian pemberian mikoriza dan jenis pupuk tidak memberikan pengaruh nyata (P>0,05) terhadap morfologi tinggi tanaman, jumlah daun, rasio daun batang, luas permukaan daun dan efisiensi penggunaan air rumput pakchong serta tidak ada pengaruh antara kedua perlakuan. Pemberian mikoriza dan jenis pupuk berpengaruh nyata (P<0,05) terhadap bobot akar rumput pakchong, akan tetapi tidak ada interaksi antara kedua perlakuan. Hasil uji Beda Nyata Terkecil (BNT) pada bobot segar akar rumput pakchong menunjukkan bahwa perlakuan mikoriza M0 tidak berbeda nyata dengan perlakuan M1 dan M3, perlakuan mikoriza M2 tidak berbeda nyata dengan perlakuan M1 dan M3, dan perlakuan M0 berbeda nyata dengan perlakuan M2. Hasil uji BNT bobot segar akar rumput pakchong pada perlakuan pupuk menujukkan bahwa perlakuan P1 berbeda nyata dengan perlakuan P2 dan P3.

e-ISSN:2598-3067 DOI: https://doi.org/10.23960/jrip.2024.8.3.377-386 Vol 8 (3): 377-386 Agustus 2024

Kata kunci: efisiensi penggunaan air, mikoriza, morfologi, pupuk, rumput pakchong

PENDAHULUAN

Perkembangan usaha peternakan semakin besar seiring berjalannya waktu. Salah satu jenis ternak vang sering dibudidayakan adalah ternak ruminansia. Hijauan adalah makanan utama bagi ternak ruminansia. Guna mendukung produktivitas ternak ruminansia perlu mendapat asupan hijauan berkualitas tinggi agar performan ternak sesuai. Salah satu jenis hijauan yang sangat potensial adalah rumput pakchong. Rumput pakchong adalah jenis rumput yang berasal dari Thailand dan merupakan hasil persilangan antara rumput gajah (Pennisetum purpureum Schumach) dengan Pearl millet (Pennisetum glaucum).

Penyediaan hijauan berkualitas seringkali terkendala ketersediaan lahan yang subur dan ketersediaan air yang cukup. Lahan dengan kriteria tesebut seringkali diperuntukan tanaman hortikultura. Menurut data BPS (2019), luas lahan kering nasional mencapai 63,4 juta hektar (33,7% luas lahan Indonesia). Hanifiah (2005) menyatakan bahwa air berfungsi sebagai pelarut dan pembawa ion-ion hara dari rhizosfer ke dalam akar dan daun. Air juga berfungsi sebagai sarana transportasi dan mendistribusikan fotosintat dari daun keseluruh bagian tanaman. Tanaman yang mengalami kekeringan pada waktu yang lama akan mengalami perubahan-perubahan morfologi, anatomi, fisiologi dan biokimia yang tidak dapat kembali pulih, sehingga dapat menyebabkan kematian. Cekaman kekeringan merupakan kondisi lingkungan tanaman tidak menerima asupan air yang cukup. Kondisi ini menyebabkan tanaman tidak dapat melakukan proses pertumbuhan dan perkembangan secara optimal serta produksi menurun.

Salah satu cara menanggulangi ketersediaan air dan unsur hara yang kurang adalah dengan pemberian mikoriza pada tanah. Mikoriza adalah asosiasi simbiotik antar akar tanaman dan jamur (Hajoeningtijas, 2012). Menurut Nusantara et al. (2012), penggunaan mikoriza dapat membantu dalam penyerapan hara dan juga air yang tidak terjangkau oleh akar. Salah satu jenis mikoriza yang telah banyak digunakan adalah mikoriza arbuskular. Produktivitas rumput yang tinggi perlu didukung dengan asupan hara yang baik agar produktivitasnya sesuai dengan potensi genetiknya. Jenis pupuk yang digunakan dapat berupa pupuk kompos, pupuk kimia atau kombinasinya Berdasarkan uraian di atas, peneliti tertarik untuk melakukan penelitian tentang aplikasi arbuscular mycorrizae dan jenis pupuk berbeda pada kondisi cekaman kekeringan terhadap morfologi dan efisiensi penggunaan air pada rumput pakchong (pennisetum purpureum cv thailand) yang digunakan sebagai pakan ternak.

MATERI DAN METODE

MATERI

Peralatan yang digunakan pada penelitian ini yaitu polybag (kapasitas 15 kg) warna hitam yang dibeli di toko online, cangkul, terpal, meteran, millimeter blok, paku, alat tulis, cutter, ayakan tanah (ukuran lubang 0,5 inch), timbangan gantung (kapasitas 100 kg), dan timbangan analitik (kapasitas 15 kg). Bahan yang digunakan pada penelitian ini yaitu tanah jenis ultisol, air, spora mikoriza, pupuk kotoran kambing, pupuk NPK yang dibeli di toko online, dan stek rumput pakchong (Pennisetum purpureum cv Thailand) yang didapat dari KPT Maju Sejahtera.

METODE

Rancangan penelitian

Penelitian ini menggunakan metode ekspemental dengan menggunakan Rancangan Acak lengkap (RAL) pola faktorial 4x3 yang terdiri dari:

Faktor pertama adalah tingkat pemberian mikoriza pada tanah, yaitu:

: tanpa mikoriza: M0

: 20 gram mikoriza/10 kg tanah dalam polybag; M1 M2 : 40 gram mikoriza/10 kg tanah dalam polybag; dan M4 : 60 gram mikoriza/10 kg tanah dalam polybag;

Faktor kedua adalah jenis pupuk, terdiri dari 3 perlakuan yaitu :

P1 : pupuk kotoran kambing (30 ton/ha);

: Pupuk NPK (urea 100 kg/ha; TSP 50 kg/ha; KCl 50 kg/ha), dan P2

P3 : Pupuk kotoran kambing (30 ton/ha) + pupuk NPK (urea 100 kg/ha; TSP 50 kg/ha; KCl 50 kg/ha).

DOI: https://doi.org/10.23960/jrip.2024.8.3.377-386 Vol 8 (3): 377-386 Agustus 2024

e-ISSN:2598-3067

Pelaksanaan penelitian

1. Persiapan media tanam dan bibit

Media yang digunakan merupakan tanah yang sudah diberikan pupuk kotoran kambing. Tanah terlebih dahulu digemburkan dan dijemur sampai kering. Tanah yang telah dikeringkan itu kemudian diayak dengan menggunakan ayakan dengan ukuran 0,5 inch . Polybag yang dipakai pada penelitian ini yaitu polybag dengan ukuran 15 kg.

2. Penetuan kapasitas lapang

Penentuan kapasitas lapang ditentukan menggunakan metode gravimetri (Effendi, 2008). Metode ini dilakukan dengan cara menyiramkan air pada media sampai jenuh dan air berhenti menetes keluar polybag. Kemudian berat media setelah pemberian air ditimbang (berat akhir). Kapasitas lapang 100% dilakukan dengan cara mengurangi berat akhir media dengan berat awal media. Kapasitas lapang 50% ditentukan berdasarkan nilai kapasitas lapang 100% yang telah diperoleh sebelumnya.

3. Penanaman dan pemeliharaan

Penanaman yang dilakukan dengan cara stek ke dalam media tanam. Ditancapkan satu ruas atau sekitar 10 - 15 cm ke dalam tanah, dengan maksud sebagai tempat tumbuhnya akar dan ruas lainya tempat tumbuhnya tunas baru. Tiap polybag berisi satu bibit stek rumput. Pemeliharaan tanaman meliputi beberapa kegiatan antara lain penyiraman dan penyiangan.

4. Perlakuan pemupukan

Perlakuan pemupukan terdiri dari pupuk kimia dan pupuk kotoran kambing. Pupuk kotoran kambing diberikan bersamaan dengan persiapan tanah untuk dimasukan ke polybag. Dosis pupuk kotoran kambing yang digunakan 30 ton/ ha. Pupuk kimia diberikan pada saat tanaman berumur 1 minggu, dengan dosis, urea = 100 kg ha, TSP 50 kg/ha dan KCl 50 kg/ha.

5. Pemberian mikoriza

Pemberian mikoriza dilakukan pada umur tanaman rumput 10 hari, dimana perakaran sudah mulai tumbuh. Dosis yang diberikan sesuai dengan perlakuan yang diberikan. Berdasarkan analisis jumlah spora di Laboratorium Ilmu Tanaman, Jurusan Agronomi dan Hortikultura, Fakultas Pertanian, Universitas Lampung (2022), jenis mikoriza arbuskular yang digunakan yaitu campuran glomus etunicatum, glomus sp. dan gigaspora margareta. Kemudian tiap 20 gram mikoriza arbuskular mengandung 1033 spora mikoriza arbuskular.

6. Perlakuan kekeringan tanaman

Perlakuan diperlakukan cekaman kekeringan setelah tanaman rumput berumur 21 hari setelah tanam. Cekaman kekeringan dilakukan dengan memberikan sejumlah yang telah ditentukan menurut metode gravimetri. Kapasitas lapang yang digunakan adalah kapasitas lapang 50%.

7. Pemanenan

Pemanenan dilakukan pada saat tanaman berumur 60 hari. Pemanenan dilakukan dengan cara memotong bagian tajuk tanaman dengan jarak 2 cm dari permukaan tanah. Selanjutnya, akar yang berada di dalam polybag dipisahkan dari polybag secara hati-hati.

Peubah yang Diamati

Peubah yang diamati dalam penelitian ini yaitu morfologi tanaman yang meliputi tinggi rumput pakchong, jumlah daun, rasio daun batang, bobot akar, dan luas permukaan daun serta efisiensi penggunaan air rumput pakchong.

Analisis Data

Data yang diperoleh dianalisis dengan menggunakan Sidik Ragam (Analysis of Variance). Apabila terdapat pengaruh nyata (P<0,05) atau pengaruh sangat nyata (P<0,01) maka dilakukan uji lanjut menggunakan uji Beda Nyata Terkecil (BNT).

DOI: https://doi.org/10.23960/jrip.2024.8.3.377-386

HASIL DAN PEMBAHASAN

PENGARUH PERLAKUAN MIKORIZA DAN JENIS PUPUK BERBEDA TERHADAP MORFOLOGI RUMPUT PAKCHONG TINGGI RUMPUT PAKCHONG

Hasil analisis ragam menunjukkan bahwa tidak terdapat interaksi (P>0,05) antara perlakuan mikoriza dan jenis pupuk berbeda terhadap morfologi tinggi rumput pakchong. Rata-rata tinggi rumput pakchong pada perlakuan pemberian mikoriza dan jenis pupuk berbeda disajikan pada Tabel 1.

Tabel 1. Pengaruh perlakuan mikoriza dan jenis pupuk berbeda terhadap morfologi tinggi rumput pakchong

Perr	, , , , , , , , , , , , , , , , , , ,			
Milania		Perlakuan Pupuk		
Mikoriza —	P1	P2	P3	Rata-rata
		(cm)		
M 0	264,00	231,00	233,33	$242,78\pm18,42$
M1	240,67	224,67	231,67	$232,33\pm8,02$
M2	223,33	213,33	225,00	$220,56 \pm 6,31$
M3	240,00	225,00	217,67	$227,56 \pm 11,38$
Rata-rata	242,00±16,72	$223,5 \pm 7,38$	226,92±7,14	

Keterangan: M0 : tanpa mikoriza P1 : pupuk kambing M1 : mikoriza 20 gram P2 : pupuk NPK

M2 : mikoriza 40 gram P3 : pupuk kambing + pupuk NPK

M3: mikoriza 60 gram

Hasil analisis sidik ragam juga menunjukkan bahwa perlakuan mikoriza tidak berpengaruh nyata (P>0,05) terhadap tinggi tanaman pakchong. Hasil tidak berpengaruh nyata tersebut diduga karena infeksi mikoriza yang diinokulasikan rendah. Menurut Pratiwi (2013), rendahnya pengaruh mikoriza arbuskular terhadap beberapa peubah pertumbuhan rumput *Setaria sphacelata* diduga disebabkan oleh efektivitas mikoriza yang diinokulasikan. Sastrahidayat (2011) menjelaskan bahwa efektivitas inokulasi mikoriza arbuskular dipengaruhi oleh beberapa faktor yaitu kesesuaian dengan tanaman inang, waktu inokulasi, kemampuan adaptasi inokulan, serta keadaan tanah atau iklim.

Hasil penelitian Rini (2010) juga menjelaskan bahwa pemberian mikoriza juga tidak berpengaruh nyata pada tinggi tanaman stek nilam. Kemudian hasil penelitian Oktavianus *et al.* (2022) menyatakan bahwa pengaruh pemberian mikoriza arbuskular tidak berpengaruh nyata terhadap tinggi tanaman rumput *Setaria Sphacelata*. Selanjutnya, Khalidin *et al.* (2012) menyatakan bahwa secara tunggal atau interaksi pemberian mikoriza dan pupuk kandang tidak berpengaruh nyata terhadap tinggi rumput gajah, jumlah anakan, dan panjang daun pada umur 20, 30, 40, dan 50 HST. Mikoriza adalah salah satu hayati yang mempunyai manfaat penting dalam kesuburan tanah dengan cara meningkatkan kemampuan tanaman dalam menyerap unsur hara seperti fosfat, air, dan nutrisi lainnya. Perakaran tanaman yang terinfeksi mikoriza akan memproduksi jaringan hifa eksternal yang tumbuh secara ekspansif, sehingga meningkatkan kapasitas akar dalam penyerapan air dan unsur hara, terutama unsur hara fosfat. Tingginya air dan unsur hara yang terserap oleh tanaman membuat pertumbuhan tanaman menjadi lebih baik. Mikoriza juga berperan dalam menstimulus pembentukan hormon-hormon pertumbuhan tanaman, seperti sitokinin dan auksin.

Selanjutnya, hasil analisis sidik ragam juga menunjukkan bahwa pemberian perlakuan jenis pupuk berbeda tidak memberikan pengaruh nyata (P>0,05) terhadap tinggi tanaman pakchong. Meskipun tidak berpengaruh nyata, namun jika dilihat dari nilai rata-rata pada Tabel 1, pemberian pupuk kotoran kambing memberikan tinggi tanaman yang paling tinggi. Pemberian pupuk kotoran kambing pada rumput pakchong ini menambah asupan hara dimana pupuk kotoran kambing diketahui memiliki kandungan nitrogen (N) yang tinggi. Sejalan dengan pendapat Mahdiannor (2014) bahwa unsur nitrogen tersebut digunakan sebagai bahan dasar penyusun asam amino yang nantinya akan membentuk protein. Menurut Hartatik dan Widowati (2006), kandungan hara pupuk kambing yaitu N 1,28 ppm, P 0,19 ppm, K 0,93 ppm, Ca 0,59 ppm, Mg 0,19 ppm, S 0,09 ppm, dan Fe 0,02 ppm. Ariyanto (2020) menyatakan bahwa pemberian pupuk kandang kambing memberikan rata-rata tinggi rumput gajah yang berbeda jika dibandingkan dengan tanpa pupuk kandang. Berdasarkan hasil penelitian menunjukkan rata-rata tinggi tanaman pada pemberian pupuk kotoran kambing lebih tinggi daripada tanpa pupuk kotoran kambing. Sariyanto *et al.* (2018), pemberian pupuk kandang akan mempengaruhi jumlah unsur hara pada tanah yang dapat di manfaatkan oleh tanaman salah satunya untuk pertumbuhan rumput gajah.

Pupuk kambing merupakan jenis pupuk organik yang dapat dimanfaatkan untuk memperbaiki sifat-sifat kimia, fisika, dan biologis tanah yang pada akhirnya dapat meningkatkan hasil tanaman. Proses

e-ISSN:2598-3067

Vol 8 (3): 377-386 Agustus 2024

dekomposisi pupuk organik yang berlangsung lambat menjadikan unsur hara yang dilepaskan dapat tersedia bagi tanaman untuk jangka waktu cukup lama dan dapat meningkatkan hasil tanaman hingga dua musim tanam. Hasil penelitian Amanullah *et al.* (2008) menunjukkan, pupuk organik dapat meningkatkan hasil tanaman hingga dua musim tanam. Pemberian kompos pada berbagai dosis memberikan respon yang berbeda baik terhadap pertumbuhan maupun hasil tanaman. Pemberian kompos sampah kota sampai dosis 30 ton/ha berpengaruh positif terhadap pertumbuhan dan hasil tanaman (Neliyati, 2005).

Jumlah Daun Rumput Pakchong

Hasil analisis ragam menunjukkan bahwa tidak terdapat interaksi perlakuan pemberian mikoriza dan pupuk dengan jenis berbeda (P>0,05) terhadap jumlah daun rumput pakchong. Hasil rata-rata jumlah daun rumput pakchong pada perlakuan pemberian mikoriza dan jenis pupuk berbeda tersaji pada Tabel 2.

Tabel 2. Pengaruh perlakuan mikoriza dan jenis pupuk berbeda terhadap morfologi jumlah daun rumput

Panen	· · · · · · · · · · · · · · · · · · ·			
Mikoriza	Perlakuan Pupuk			Data mata
	P1	P2	P3	Rata-rata
		(helai/polybag)		
M 0	43,33	35,67	35,67	$38,22\pm4,43$
M1	32,33	33,00	26,00	$30,44\pm3,86$
M2	46,00	23,67	26,33	$32,00\pm12,20$
M3	37,00	29,67	39,67	$35,44\pm5,18$
Rata-rata	$39,67\pm6,18$	$30,50\pm5,17$	$31,92\pm6,84$	

Keterangan: M0 : tanpa mikoriza P1 : pupuk kambing M1 : mikoriza 20 gram P2 : pupuk NPK

M2 : mikoriza 40 gram P3 : pupuk kambing + pupuk NPK M3 : mikoriza 60 gram

Hasil analisis ragam juga menunjukkan bahwa pemberian perlakuan mikoriza tidak berpengaruh nyata (P>0,05) terhadap jumlah daun rumput pakchong. Hasil tidak berpengaruh nyata tersebut diduga karena infeksi mikoriza yang diinokulasikan rendah. Penelitian Pratiwi (2013) pada rumput *Setaria sphacelata* juga menunjukkan rendahya pengaruh mikoriza pada pertumbuhan rumput. Rendahnya pengaruh mikoriza arbuskular terhadap beberapa peubah pertumbuhan rumput *Setaria sphacelata* diduga disebabkan oleh efektivitas mikoriza yang diinokulasikan. Aulia *et al.* (2016) menyatakan bahwa pertumbuhan tanaman dipengaruhi oleh ketersediaan unsur hara dalam tanah. Hasil penelitian Rini (2010) juga menunjukkan bahwa pemberian mikoriza tidak berpengaruh nyata terhadap jumlah daun tanaman nilam.

Hasil analisis sidik ragam juga menunjukkan bahwa pupuk dengan jenis berbeda tidak memberikan pengaruh nyata (P>0,05) terhadap jumlah daun rumput pakchong. Meskipun tidak berpengaruh nyata, dapat dilihat pada Tabel 3. bahwa perlakuan pupuk dengan rata-rata jumlah daun paling banyak yaitu P1 (pupuk kotoran kambing) sebanyak 39,67±6,18 helai. Hal ini karena pemberian pupuk kotoran kambing menambah asupan hara dimana pupuk kambing diketahui memiliki kandungan nitrogen (N) yang tinggi. Sejalan dengan pendapat Mahdiannor (2014) bahwa unsur nitrogen tersebut digunakan sebagai bahan dasar penyusun asam amino yang nantinya akan membentuk protein. Penelitian Putra dan Ningsi (2019) menyatakan bahwa pemberian pupuk kambing dosis 30 ton/ha memberikan rataan jumlah daun tertinggi dibandingkan perlakuan yang tidak diberikan pupuk kotoran kambing. Hal tersebut menjunjukkan bahwa pemberian pupuk kotoran kambing dengan dosis 30 ton/ha menyediakan unsur hara yang seimbang. Menurut Hartatik dan Widowati (2006), kandungan hara pupuk kambing yaitu N 1,28 ppm, P 0,19 ppm, K 0,93 ppm, Ca 0,59 ppm, Mg 0,19 ppm, S 0,09 ppm, dan Fe 0,02 ppm. Kandungan pupuk kambing ini dapat membantu tanaman memperbaiki sifat-sifat kimia, fisika, dan biologi tanah sehingga meningkatkan tingkat kesuburan tanah.

Rasio Daun Batang Rumput Pakchong

Hasil analisis ragam menunjukkan bahwa tidak terdapat interaksi perlakuan pemberian mikoriza dan pupuk dengan jenis berbeda (P>0,05) terhadap rasio daun batang rumput pakchong serta tidak terdapat pengaruh antar masing masing perlakuan. Hasil rata-rata rasio daun batang rumput pakchong dengan pemberian perlakuan mikoriza dan jenis pupuk memiliki nilai antara 0,45-0,67. Hasil rata-rata batang rumput pakchong dengan pemberian perlakuan mikoriza dan jenis pupuk berbeda pada kondisi cekaman kekeringan tersaji pada Tabel 3.

e-ISSN:2598-3067 DOI: https://doi.org/10.23960/jrip.2024.8.3.377-386 Vol 8 (3): 377-386 Agustus 2024

Tabel 3. Pengaruh perlakuan mikoriza dan jenis pupuk berbeda terhadap morfologi rasio daun batang rumput pakchong

Mikoriza		Perlakuan Pupuk		Data mata
MIKOHZa	P1	P2	Р3	Rata-rata
M0	0,59	0,64	0,52	0,58±0,06
M1	0,54	0,52	0,52	$0,53\pm0,01$
M2	0,49	0,55	0,45	$0,50\pm0,05$
M3	0,51	0,45	0,67	$0,54\pm0,11$
Rata-rata	0,53±0,04	0,54±0,08	0,54±0,09	

Keterangan:

M0: tanpa mikoriza

M1: mikoriza 20 gram M2 : mikoriza 40 gram

M3: mikoriza 60 gram

P1: pupuk kambing P2: pupuk NPK

P3 : pupuk kambing + pupuk NPK

Hasil analisis ragam menunjukkan bahwa pemberian perlakuan mikoriza tidak berpengaruh nyata (P>0,05) terhadap morfologi rasio daun batang. Hasil tidak berpengaruh nyata tersebut diduga karena infeksi mikoriza yang diinokulasikan rendah. Menurut Pratiwi (2013), rendahnya pengaruh mikoriza arbuskular terhadap beberapa peubah pertumbuhan rumput setaria sphacelata diduga disebabkan oleh efektivitas mikoriza yang diinokulasikan. Menurut Delvian (2005), terdapat faktor-faktor yang mempengaruhi infeksi akar antara lain yaitu jenis fungi yang berkaitan dengan kerapatan inokulum dan lingkungan (persaingan antar spesies fungi).

Selanjutnya berdasakan hasil rata-rata pengaruh perlakuan pupuk terhadap rasio daun batang rumput pakchong dari tertinggi hingga terendah yaitu P3 (pupuk kotoran kambing + pupuk kimia) sebesar 0,54 gram dan P2 (pupuk kimia) yaitu 0,54 gram, kemudian P1 (pupuk kotoran kambing) sebesar 0,53±0,04. Perlakuan P3 dan P2 memiliki nilai tertinggi terhadap rasio daun batang menandakan kombinasi pupuk kambing dan pupuk kimia mampu memenuhi kebutuhan unsur hara tanaman. Pemberian pupuk tersebut memberikan pengaruh terhadap pertumbuhan dan produksi tanaman dalam kegiatan respirasi sel, fotosintesis, fosforilasi oksidatif, polimerasi protein, dan berbagai proses enzimatik lainnya.

Bobot Segar Akar Rumput Pakchong

Hasil analisis ragam menunjukkan bahwa tidak terdapat interaksi perlakuan pemberian mikoriza dan pupuk dengan jenis berbeda (P>0,05) terhadap bobot segar akar rumput pakchong. Rata-rata bobot segar akar rumput pakchong dengan pemberian mikoriza dan jenis pupuk berbeda pada kondisi cekaman kekeringan disajikan dalam Tabel 4.

Tabel 4. Pengaruh perlakuan mikoriza dan jenis pupuk berbeda terhadap morfologi bobot akar rumput pakchong

puntin	8			
Mikoriza –	Perlakuan Pupuk			D.4
	P1	P2	Р3	Rata-rata
		(g/batang)		
M0	73,67	51,67	53,00	$59,44\pm12,33^{b}$
M1	65,00	35,33	32,33	$45,89\pm18,06^{ab}$
M2	51,00	31,33	34,00	38,78±10,67a
M3	47,67	28,67	62,00	$46,11\pm16,72^{ab}$
Rata-rata	60,58±13,15 ^b	36,75±10,31a	45,33±14,54a	

Keterangan:

 $60,58\pm13,15^{b}$ M0 : tanpa mikoriza

M1: mikoriza 20 gram M2: mikoriza 40 gram

M3: mikoriza 60 gram

P1: pupuk kambing P2 : pupuk NPK

P3: pupuk kambing + pupuk NPK

Analisis ragam menunjukkan bahwa perlakuan mikoriza berpengaruh nyata (P<0,05) terhadap bobot segar akar rumput pakchong. Meskipun hasil yang didapat berpengaruh nyata, namun rata-rata bobot segar akar pada pemberian mikoriza tidak lebih tinggi dibandingkan dengan bobot segar akar tanpa pemberian mikoriza. Hal ini sejalan dengan pendapat Scannerini dan Bonfante Fasolo (1984) yang dikutip oleh Delvian (2005) pemberian mikoriza tidak menyebabkan sistem perakaran tanaman membesar. Imas et al. (1989) juga menyatakan bahwa akar tanaman yang terinfeksi mikoriza tidak berubah bentuk dan mempunyai rambut-rambut akar. Hal ini menunjukkan bahwa pemberian mikoriza

tidak meningkatkan bobot akar.

Selanjutnya hasil analisis ragam menunjukkan bahwa perlakuan pupuk berpengaruh sangat nyata (P<0,01) terhadap bobot segar akar rumput pakchong dimana bobot segar akar tertinggi pada perlakuan P1 (pupuk kotoran kambing) sebesar 60,58±13,15 gram. Menurut Foth (1994), pemberian pupuk organik mampu memperbaiki struktur tanah, membuat agregat atau butiran tanah menjadi besar atau mampu menahan air sehingga aerase di dalamnya menjadi lancar dan dapat meningkatkan perkembangan akar. Penambahan takaran pupuk kandang kambing akan berpengaruh pada penambahan bahan organik dan bobot isi tanah. Bobot isi tanah yang rendah menjadikan kepadatan dan kekerasan tanah rendah, sehingga kondisi demikian memberikan lingkungan yang baik untuk perakaran tanaman dan secara tidak langsung memberi kemudahan penyerapan unsur hara. Menurut Nofyangtri (2011) bobot segar akar berkaitan dengan kemampuan akar menyerap air, dengan ketersedian air yang ada didalam tanah juga membantu proses percabangan akar yang banyak

Luas Permukaan Daun Rumput Pakchong

Hasil analisis ragam menunjukkan bahwa tidak terdapat interaksi perlakuan pemberian mikoriza dan pupuk dengan jenis berbeda (P>0,05) terhadap luas permukaan daun rumput pakchong. Hasil ratarata luas permukaan daun rumput pakchong disajikan dalam Tabel 5.

Tabel 5. Pengaruh perlakuan mikoriza dan jenis pupuk berbeda terhadap morfologi luas permukaan daun rumput pakchong

Milania	Perlakuan Pupuk			Data sata
Mikoriza	P1	P2	P3	- Rata-rata
		(cm²/daun)		
M0	1462	1336	1399	1399,00
M1	1332	1208	1317	1285,78
M2	1131	1224	1292	1215,56
M3	1267	1311	1487	1354,89
Rata-rata	1297.92	1269.67	1373.83	

Keterangan:

M0 : tanpa mikoriza

M1: mikoriza 20 gram

M2 : mikoriza 40 gram

M3: mikoriza 60 gram

P1: pupuk kambing

P2: pupuk NPK

P3 : pupuk kambing + pupuk NPK

Berdasarkan hasil analisis ragam menunjukkan bahwa pemberian mikoriza arbuskular tidak berpengaruh nyata (P>0,05) terhadap luas permukaan daun rumput pakchong. Hasil tidak berpengaruh nyata tersebut diduga karena infeksi mikoriza yang diinokulasikan rendah. Menurut Pratiwi (2013), rendahnya pengaruh mikoriza arbuskular terhadap beberapa peubah pertumbuhan rumput Setaria sphacelata diduga disebabkan oleh efektivitas mikoriza yang diinokulasikan. Sastrahidayat (2011) menjelaskan bahwa efektivitas inokulasi mikoriza arbuskular dipengaruhi oleh beberapa faktor yaitu kesesuaian dengan tanaman inang, waktu inokulasi, kemampuan adaptasi inokulan, serta keadaan tanah atau iklim. Hasil diatas sejalan dengan hasil penelitian Erlita dan Hariani (2017) bahwa pemberian mikoriza arbuskular tidak berpengaruh nyata pada luas daun tanaman jagung.

Selanjutnya, hasil analisis ragam menunjukkan bahwa pemberian jenis pupuk berbeda tidak memberikan pengaruh nyata (P>0,05) terhadap luas permukaan daun. Hasil rata-rata luas permukaan daun pada pemberian jenis pupuk berbeda dari tertinggi hingga terendah yaitu P3 (pupuk kotoran kambing + pupuk kimia) 1373,83 cm², P1 (pupuk kotoran kambing) 1297,92 cm², P2 (pupuk kimia) 1269,67 cm². Hasil rata-rata luas daun perlakuan P3 yang merupakan nilai tertinggi menunjukkan pemberian pupuk kimia dan pupuk kambing secara bersamaan mampu memenuhi kebutuhan unsur hara tanaman. Sejalan dengan pendapat Valdright et al. (1996) pemberian pupuk organik dan anorganik di waktu yang sama akan menambah kesuburan tanah dengan dilepasnya unsur-unsur hara sehingga tersedia untuk tanaman. Pemberian pupuk tersebut memberikan pengaruh terhadap pertumbuhan dan produksi tanaman dalam kegiatan respirasi sel, fotosintesis, fosforilasi oksidatif, polimerasi protein, dan berbagai proses enzimatik.

PENGARUH PERLAKUAN MIKORIZA DAN JENIS PUPUK BERBEDA TERHADAP EFISIENSI PENGGUNAAN AIR RUMPUT PAKCHONG

Hasil analisis ragam menunjukkan bahwa tidak terdapat interaksi perlakuan pemberian mikoriza dan pupuk dengan jenis berbeda (P>0,05) terhadap jumlah daun rumput pakchong. Rata-rata nilai efisiensi penggunaan air rumput pakchong dengan pemberian perlakuan mikoriza dan jenis pupuk

berbeda disajikan pada Tabel 6.

Tabel 6. Pengaruh perlakuan mikoriza dan jenis pupuk berbeda terhadap efisiensi pengunaan air rumput pakchong

Mikoriza	Perlakuan Pupuk			- Rata-rata
WIIKOIIZa	P1	P2	Р3	Kata-rata
		(g/ml)		
M0	0,00456	0,00391	0,00400	0,00416
M1	0,00438	0,00390	0,00376	0,00401
M2	0,00442	0,00263	0,00374	0,00360
M3	0,00467	0,00409	0,00422	0,00433
Rata-rata	0,00451	0,00363	0,00393	
eterangan:	M0 : tanpa mikoriza M1 : mikoriza 20 gram M2 : mikoriza 40 gram	P1 : pupuk kambir P2 : pupuk NPK P3 : pupuk kambir		

M3: mikoriza 60 gram

Hasil analisis sidik ragam menunjukkan bahwa pemberian mikoriza tidak berpengaruh nyata (P>0,05) terhadap efisiensi penggunaan air rumput pakchong. Meskipun berdasarkan hasil analisis tidak berpengaruh nyata, namun dilihat dari nilai rata-rata pada Tabel 6, terdapat kecenderungan nilai efisiensi penggunaan air pada perlakuan mikoriza yang terbaik yaitu M3 (mikoriza 60 gram). Hal ini disebabkan karena tanaman yang memiliki mikoriza dapat lebih tahan dan dapat lebih efisien dalam memanfaatkan air. Hal ini sesuai dengan pendapat Wicaksono dan Ricky (2010) bahwa salah satu manfaat mikoriza arbuskular yaitu meningkatkan ketahanan terhadap kekeringan serta memperluas penyebaran hifa dalam tanah sehingga dapat mengambil air relatif lebih banyak. Selanjutnya, Nusantara et al. (2012) menyatakan bahwa penggunaan mikoriza dapat membantu dalam penyerap hara dan juga air yang tidak terjangkau oleh akar. Perakaran tanaman yang terinfeksi mikoriza akan memproduksi jaringan hifa eksternal yang tumbuh secara ekspansif, sehingga meningkatkan kapasitas akar dalam penyerapan air dan unsur hara, terutama unsur hara fosfat.

Hasil analisis ragam menunjukkan bahwa pemberian jenis pupuk yang berbeda tidak memberikan pengaruh nyata (P>0.05) terhadap nilai efisiensi penggunaan air rumput pakchong. Hasil rataan tertinggi terdapat pada P1 (pupuk kambing) sebesar 0,00451. Hal ini diduga karena pupuk kotoran kambing memiliki kandungan unsur hara yang tinggi terutama nitrogen meningkatkan bobot kering tanaman sehingga nilai efisiensi penggunaan air pun meningkat. Menurut Suraya (2002) bobot kering tanaman merupakan salah satu indikator pertumbuhan tanaman, di mana nilai bobot kering tanaman yang tinggi menunjukkan terjadinya peningkatan proses fotosintesis karena unsur hara yang diperlukan cukup tersedia. Hal tersebut berhubungan dengan hasil fotosintat yang ditranslokasikan ke seluruh organ tanaman untuk pertumbuhan tanaman, sehingga memberikan pengaruh yang nyata pada biomassa tanaman. Pemberian pupuk kandang kambing dapat meningkatkan daya serap serta daya ikat tanah akar terhadap air dan unsur hara yang merupakan faktor untuk perkembangan akar. Pemberian pupuk kandang kambing bisa memperbaiki struktur tanah sehingga daya serap unsur hara pada akar tanaman menjadi lebih baik. Besarnya bobot segar akar akan berpengaruh pada daya serap akar terhadap unsur hara pada tanah (Novrita, 2021). Menurut Simamora dan salundik (2006), pupuk kompos pada umumnya mengandung unsur hara kompleks (makro dan mikro) walaupun dalam jumlah sedikit, selain itu secara fisik kompos juga mampu menggemburkan tanah, memperbaiki aerase, meningkatkan penyerapan dan daya simpan air (water holding capacity).

SIMPULAN DAN SARAN

SIMPULAN

- 1. Pemberian perlakuan Arbuscular mycorrhizae jenis pupuk berbeda pada kondisi cekaman kekeringan tidak memberikan interaksi nyata (P>0.05) terhadap morfologi dan efisiensi penggunaan air rumput
- 2. Pemberian level Arbuscular mycorrhizae pada kondisi cekaman kekeringan tidak berpengaruh nyata (P>0,05) terhadap tinggi tanaman, jumlah daun, rasio daun batang, luas permukaan daun dan efisiensi penggunaan air rumput pakchong. Akan tetapi berpengaruh nyata terhadap (P<0,05) terhadap bobot

DOI: https://doi.org/10.23960/jrip.2024.8.3.377-386 **Vol 8 (3): 377-386 Agustus 2024**

akar rumput pakchong.

3. Pemberian perlakuan jenis pupuk yang berbeda pada kondisi cekaman kekeringan tidak berpengaruh nyata (P>0,05) terhadap tinggi tanaman, jumlah daun, rasio daun batang, luas permukaan daun, efisiensi penggunaan air rumput pakchong. Akan tetapi berpengaruh sangat nyata (P<0,01) terhadap bobot akar rumput pakchong.

SARAN

Perlu dilakukan penelitian lanjutan pengaruh pemberian mikoriza terhadap infeksi mikoriza pada akar agar tingkat efektivitas infeksi mikoriza terhadap tanaman dapat diketahui.

DAFTAR PUSTAKA

- Amanullah, K.E.Z., T. Horiuchi, and T. Matsui. 2008. Effect of compost and green manure of pea and their combinations with chicken manure and repeseed oil residue on soil fertility and nutrient uptake in wheatrice cropping system. *African Journal of Agricultural Research*. 3(9):633 639.
- Ariyanto. B.F, Z. Luklukyah, dan T.P. Rahayu. 2020. Pertumbuhan rumput gajah (*Penisetum purpureum*) yang diberikan penambahan pupuk kandang kambing. Prosiding. Seminar Nasional Strategi Ketahanan Pangan Masa New Normal Covid-19, dalam Rangka Dies Natalis ke-44 UNS, Magelang, Indonesia.
- Aulia, Fatimatul, S. Hilda, dan N.F. Edwin. 2016. Pengaruh Pemberian Pupuk Hayati dan Mikoriza terhadap Intensitas Serangan Penyakit Layu Bakteri (*Ralstonia Solanacearum*), Pertumbuhan, dan Hasil Tanaman Tomat. Skripsi. Universitas Lambung Mangkurat. Kalimantan Selatan.
- Badan Pusat Statistik. 2019. Luas Lahan Kering di Indonesia. http://bps.go.id. Diakses tanggal 20 Agustus 2022.
- Daras U., Trisilawati, dan J. Towaha. 2013. Pengaruh mikoriza dan ameliorant terhadap petumbuhan benih kopi. *Buletin Riset Tanaman Rempah dan Aneka Tanaman Industri*. 4(2):145 156.
- Delvian. 2005. Respon Pertumbuhan dan Perkembangan Cendawan Mikoriza Arbuskula dan Tanaman terhadap Salinitas Tanah. Skripsi. Fakultas Pertanian. Universitas Sumatera Utara. Medan.
- Effendi, Y. 2008. Kajian Resistensi Beberapa Varietas Padi Gogo (*Oryza sativa L.*) terhadap Cekaman Kekeringan. Skripsi. Fakultas Pertanian Universitas Sebelas Maret. Surakarta.
- Erlita dan Farida. 2017. Pemberian mikoriza dan pupuk organik terhadap pertumbuhan dan produksi tanaman jagung (*Zea mays*). *J. Agrium*. 20 (3): 268 272.
- Foth, H. D. 1994. Dasar Ilmu Tanah. Terjemahan: Adisoemarto. Erlangga. Jakarta.
- Hajoeningtijas, O. D. 2012. Mikrobiologi Pertanian. Graha Ilmu. Yogyakarta.
- Hanafiah, K.A. 2005. Dasar Dasar Ilmu Tanah. PT. Raja Grafindo Persada. Jakarta.
- Hartatik, W. dan L. Widowati. 2006. Pupuk Kandang : Pupuk Organik dan Pupuk Hayati. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian.
- Imas, T., R.S. Hadioetomo, A.W. Gunawan, dan Y. Setiadi. 1989. Mikrobiologi Tanah II. Dirjen Dikti. PAU Bioteknologi IPB.
- Khalidin, T., Arabia, dan Fikrinda. 2012. Pengaruh FMA dan pupuk kambing terhadap produksi dan kualitas rumput gajah (*Pennisetum purpureum Schum*). *Jurnal Manajemen Sumberdaya Lahan*. 1(2):179 183.
- Mahdiannor. 2014. Pertumbuhan dan hasil tanaman jagung manis (*Zea mays L. Var. Saccharata*) dengan pemberian pupuk hayati pada lahan rawa lebak. *Ziraa'Ah Majalah Ilmiah Pertanian*. 39(3):105–113.
- Neliyati. 2010. Pertumbuhan batang bawah bibit karet (hevea brasiliensis muell.arg) dengan pemberian mikoriza arbuskula pada beberapa kondisi air polybag. *Jurnal Karet*. 14 (2). 89 101.
- Novrita, F. 2021. Pengaruh Perbandingan Pupuk Kandang Kambing Dan Tanah Terhadap Pertumbuhan Dan Hasil Tanaman Serai Wangi (*Cymbopogon nardus L.*) Skripsi. Universitas Andalas. Padang.
- Nusantara, A. D., Y. H. Bertham dan I. Mansur. 2012. Bekerja dengan Fungi Mikoriza Arbuskula. Seameo Biotrop (Southeast Asean Regimal Centre for Tropical Biology). IPB.
- Oktavianus, R., R. Nahak, Beatrix, Ulu, dan Y.N. Eduadrus. 2020. Aplikasi FMA (fungi mikoriza arbuskular) dan pupuk kompos dengan level berbeda pada pertumbuhan dan produksi biomasa rumput setaria sphacelata. *Journal of Animal Science*. 7(1): 1–4.
- Pratiwi, D. 2013. Pemanfaatan Pupuk Kandang Ayam dan Fungi Mikoriza Arbuskula untuk Memperbaiki Pertumbuhan bibit Jeruk Siam. Skripsi. Departemen Agronomi dan Hortikultura Fakultas Pertanian. Institut Pertanian Bogor. Bogor.
- Putra, B. S. Ningsi. 2019. Peranan pupuk kambing terhadap tinggi tanaman, jumlah daun, lebar dan luas

e-ISSN:2598-3067

- e-ISSN:2598-3067 24.8.3.377-386 Vol 8 (3): 377-386 Agustus 2024
- daun total *Pennisitum purpureum cv. Mott. Stock Peternakan.* 2(2): 1-17.
- Rini, M. V. 2010. Pengaruh Pemberian Mikoriza dan Bahan Stek Pada Pertumbuhan Bibit Nilam (*Pogostemon cablin Benth.*). Prosiding Seminar Nasional Sainns dan Teknologi III.
- Sariyanto., P. Hadi, dan T. Pamujiasih. 2018. Pengaruh macam dan dosis pupuk kandang terhadap pertumbuhan tanaman rumput gajah (*Pennisetum purpureum*). *Agronomika*. 13(1). 187 191.
- Sastrahidayat, dan I. Rochdjatun. 2011. Rekayasa Pupuk Hayati Mikoriza dalam Meningkatkan Produksi Pertanian. Universitas Brawijaya Press. Malang.
- Scannerini, S. and P. Bonfate-Fosolo. 1983. Comparative ultrastructural analysis of mycorrhizal associations. *Can. J. Bot.* 61(3): 917-922.
- Simamora, S. dan Salundik. 2006. Meningkatkan Kualitas Kompos. AgroMedia Pustaka. Jakarta.
- Suraya. 2002. Kajian Kompatibilitas Isolate Cendawan Mikoriza Arbuskula (CMA) Terhadap Pertumbuhan Dua Klon Jati (*Tectona grandis L.F*) Hasil Perbanyakan Kultur Jaringan. Tesis. IPB. Bogor.
- Valdright, M.M., A. Pera, M. Agnolucci, S. Frassinetti, S. Lunadi, and G. Vallini. 1996. Effect of compost derived humic acids on vegetable biomass production and microbial growth whitin a plant system: a comparative study. *Agric Ecosystem and Environt Journal*. 58:1 133.
- Verbruggen, E., M.G.A van der Heijden, M.C. Rillig, and E.T. Kiers. 2013. Mycorrhizal fungal establishment in agricultural soils: Faktors determining inoculation success. *New Phytologis*. 197 (4):1104 1109.
- Wicaksono, M.I., M. Rahayu, dan Samanhudi. 2014. Pengaruh pemberian mikoriza dan pupuk organik terhadap pertumbuhan bawang putih. Caraka. *Jurnal Ilmu Ilmu Pertanian* 29 (1): 35-44.